domingo, 30 de septiembre de 2012
domingo, 9 de septiembre de 2012
RESUMEN GENERAL
Espectros de emisión y series espectrales
El espectro de emisión atómica de un elemento es un conjunto de frecuencias de las ondas electromagnéticas emitidas por átomos de ese elemento, en estado gaseoso, cuando se le comunica energía. El espectro de emisión de cada elemento es único y puede ser usado para determinar si ese elemento es parte de un compuesto desconocido.
Tipos de líneas espectrales
Las ideas que sustentan la teoría cuántica, surgieron como alternativo al tratar de explicar el comportamiento de sistemas en las que el aparato conceptual de la física clásica se mostraba insuficiente.
PRINCIPIO DE INCERTIDUMBRE DE HEISENBERG
Ecuación de onda de schrodinger
El desarrollo de la física cuántica a introducido nuevas formas de comprender los fenómenos que rodean el comportamiento de las partículas elementales. Se ha visto que las ondas electromagnéticas poseen cualidades de partículas energéticas, así como los electrones poseen propiedades de ondas, es decir, es posible asignarles una frecuencia angular y una contante de movimiento determinada, pero además es imposible establecer un punto exacto del espacio donde se encuentra la partícula. La fusión definitiva que cuantifica estas ideas, a sido conseguida gracias a estudios científicos desarrollados por Erwin Schrodinger, llamádola ecuación de onda, la cual incluye en comportamiento ondulatorio de las partículas y la fusión de la probabilidad de su ubicación.Es cierto que la búsqueda de la solución de esta ecuación es en el extremo complicada, pero para situaciones reales es de gran utilidad para establecer un estudio matemático riguroso de modelos físicos.
El espectro de emisión atómica de un elemento es un conjunto de frecuencias de las ondas electromagnéticas emitidas por átomos de ese elemento, en estado gaseoso, cuando se le comunica energía. El espectro de emisión de cada elemento es único y puede ser usado para determinar si ese elemento es parte de un compuesto desconocido.
Las características del espectro de emisión de algunos elementos son claramente visibles a ojo descubierto cuando estos elementos son calentados. Por ejemplo, cuando un alambre de platino es bañado en una solución de nitrato de estroncio y después es introducido en una llama, los átomos de estroncio emiten color rojo. De manera similar, cuando el Cobre es introducido en una llama, ésta se convierte en luz verde. Estas caracterizaciones determinadas permiten identificar los elementos mediante su espectro de emisión atómica.
El hecho de que sólo algunos colores aparezcan en las emisiones atómicas de los elementos significa que sólo determinadas frecuencias de luz son emitidas. Cada una de estas frecuencias están relacionadas con la energía de la fórmula:
E fotón = hν
Una línea espectral es una línea oscura o brillante en un espectro uniforme y continuo, resultado de un exceso o una carencia de fotones en un estrecho rango de frecuencias, comparado con las frecuencias cercanas. Cuando existe un exceso de fotones se habla de una línea de emisión. En el caso de existir una carencia de fotones, se habla de una línea de absorción. El estudio de las líneas espectrales permite realizar un análisis químico de cuerpos lejanos, siendo la espectroscopia uno de los métodos fundamentales usados en la astrofísica, aunque es utilizada también en el estudio de la Tierra.
Tipos de líneas espectrales
Espectro continuo
Líneas de emisión
Líneas de absorción
Las líneas espectrales son el resultado de la interacción entre un sistema cuántico —por lo general, átomos, pero algunas veces moléculas o núcleos atómicos— y fotones. Cuando un fotón tiene una energía muy cercana a la necesaria para cambiar el estado de energía del sistema (en el caso del átomo el cambio de estado de energía sería un electrón cambiando de orbital), el fotón es absorbido. Tiempo después, será remitido, ya sea en la misma frecuencia o longitud de onda[1] que originalmente tenía, o en forma de cascada, es decir, una serie de fotones de diferente frecuencia. La dirección en la que el nuevo fotón será remitido estará relacionada con la dirección de dónde provino el fotón original
Teoría de bohr
El físico danés Niels Bohr ( Premio Nobel de Física 1922), propuso un nuevo modelo atómico que se basa en tres postulados:
Primero:
Los electrones giran alrededor del núcleo en órbitas estacionarias sin emitir energía
Segundo:
Los electrones solo pueden girar alrededor del núcleo en aquellas órbitas para las cuales el momento angular del electrón es un múltiplo entero de h/2p.
Los electrones giran alrededor del núcleo en órbitas estacionarias sin emitir energía
Segundo:
Los electrones solo pueden girar alrededor del núcleo en aquellas órbitas para las cuales el momento angular del electrón es un múltiplo entero de h/2p.
siendo "h" la constante de Planck, m la masa del electrón, v su velocidad, r el radio de la órbita y n un número entero (n=1, 2, 3, ...) llamado número cuántico principal, que vale 1 para la primera órbita, 2 para la segunda, etc.
Tercero:
Cuando un electrón pasa de una órbita externa a una más interna, la diferencia de energía entre ambas órbitas se emite en forma de radiación electromagnética.
Mientras el electrón se mueve en cualquiera de esas órbitas no radia energía, sólo lo hace cuando cambia de órbita. Si pasa de una órbita externa (de mayor energía) a otra más interna (de menor energía) emite energía, y la absorbe cuando pasa de una órbita interna a otra más externa. Por tanto, la energía absorbida o emitida será:
Tercero:
Cuando un electrón pasa de una órbita externa a una más interna, la diferencia de energía entre ambas órbitas se emite en forma de radiación electromagnética.
Mientras el electrón se mueve en cualquiera de esas órbitas no radia energía, sólo lo hace cuando cambia de órbita. Si pasa de una órbita externa (de mayor energía) a otra más interna (de menor energía) emite energía, y la absorbe cuando pasa de una órbita interna a otra más externa. Por tanto, la energía absorbida o emitida será:
En resumen podemos decir que los electrones se disponen en diversas órbitas circulares que determinan diferentes niveles de energía.
Bohr describió el átomo de hidrógeno con un protón en el núcleo, y girando a su alrededor un electrón.
En éste modelo los electrones giran en órbitas circulares alrededor del núcleo; ocupando la órbita de menor energía posible, o sea la órbita más cercana posible al núcleo. |
El modelo atómico de Bohr-Sommerfeld
El modelo atómico ideado por Ernest Rutherford a principios del siglo XX describía el átomo de hidrógeno como un sistema compuesto por un núcleo masivo de carga eléctrica positiva y dimensiones mínimas en torno al cual se movía un electrón negativo. Cuando este modelo se mostró insuficiente, Niels Bohr introdujo una serie de postulados cuánticos que establecieron un nuevo marco conceptual para el desarrollo de la teoría atómica.
El átomo de hidrógeno
Si se considera el átomo de hidrógeno como un conjunto de núcleo y electrón sometido a las leyes de la dinámica de las fuerzas centrales, la energía total y el momento angular del electrón deberían regirse por las siguientes expresiones:
Donde r es el radio de la órbita del electrón, m su masa y Z el número atómico del hidrógeno (expresado en forma simbólica, aunque su valor es 1).
Estas expresiones explican el comportamiento mecánico del sistema, pero no sus propiedades electromagnéticas. Según el electromagnetismo clásico, si un electrón emitiera radiaciones caería irremisiblemente bajo el influjo del núcleo atómico.
Modelo de Bohr-Sommerfeld
Para comprender el comportamiento del átomo de hidrógeno, el danés Niels Bohr (1885-1962) incorporó al modelo anterior consideraciones propias de la teoría cuántica. Bohr supuso que el electrón sólo puede describir ciertas órbitas circulares alrededor del núcleo, que llamó estacionarias y a las que identificó con números enteros.
Cuando un electrón emite radiación, pasa de una órbita estacionaria n a otra n¿, y la diferencia entre sus energías se corresponden con la energía del fotón emitido:
Como el número de órbitas posibles del electrón es discreto, también lo es el conjunto de frecuencias electromagnéticas que puede emitir. Si un electrón absorbe un fotón, adquiere energía y pasa a una órbita más alejada del núcleo, y si lo emite, pierde energía y cae a una órbita más cercana al núcleo.
También propuso que las órbitas permitidas serían aquellas cuyo momento angular L fuera un múltiplo de la constante , es decir: L = n , siendo n = 1, 2, 3... De este modo, los radios de las órbitas estacionarias de Bohr y los niveles de energía asociados serían:
El físico alemán Arnold Sommerfeld (1868-1951) completó este modelo atómico de Bohr considerando que las órbitas descritas no eran circulares, sino elípticas, y desarrolló las correcciones correspondientes.
teoría cuántica
Estudia los aspectos últimos de la substancia, los constituyentes más esenciales de la materia (denominadas “partículas elementales”) y la propia naturaleza de la radiación.
Es uno de los pilares fundamentales de la física actual.
Una serie de observaciones empíricas cuya explicación no era abordable a través de los métodos existentes propicio la aparición de las nuevas ideas.
En las ideas de la física cuántica y clásica, se tiene en cuenta el notable éxito experimental que habían mostrado a lo largo del siglo XIX apoyándose en la mecánica de newton y la teoría electromagnética de maxwell. Se limita exclusivamente a los niveles atómicos, subatómicos y nuclear.
Principio de dualidad. postulado de broglie
El físico francés Louis de Broglie en 1924, considero, que la luz no solo es un efecto corpuscular sino también ondulatorio. La dualidad onda-corpúsculo es la posesión de propiedades tanto ondulatorias como corpusculares por parte de los objetos subatómicos. La teoría de la dualidad de la materia considera que la materia tiene un comportamiento corpúsculo-onda ó partícula-onda.
Postulados de Broglie:
Diversos experimentos de óptica aplicada llevaron a la consideración de la luz como una onda.
De otra parte el efecto fotoeléctrico demostró la naturaleza corpuscular de la luz(fotones)
En 1924 De Broglie sugirió que el comportamiento dual de la onda-partícula dado a la luz, podría extenderse con un razonamiento similar, a la materia en general. Las partículas materiales muy pequeñas (electrones, protones, átomos y moléculas) bajo ciertas circunstancias pueden comportarse como ondas. En otras palabras, las ondas tienen propiedades materiales y las partículas propiedades ondulatorias (ondas de materia)
Según la concepción de Broglie, los electrones en su movimiento deben tener una cierta longitud de onda por consiguiente debe haber una relación entre las propiedades de los electrones en movimiento y las propiedades de los fotones.
La longitud de onda asociada a un fotón puede calcularse:
ð Longitud de onda en cm.
H= Constante de Planck= 6,625 x 10-27 ergios/seg
M= Masa
C= Velocidad de la Luz
Esta ecuación se puede aplicar a una partícula con masa(m) y velocidad (v), cuya longitud de onda (ðð sería:
En mecánica cuántica, la relación de indeterminación de Heisenberg principio de incertidumbre establece la posibilidad de que determina dos partes de magnitudes físicas sean donosidad por precisión arbitraria. Sucintamente afirma que no se puede determinar en términos de física clásica, ciertos pares de variables físicas, la posición y el movimiento lineal de un objeto dado, en otras palabras, cuanta mayor certeza se busca en determinar la posición de una partícula menos se conoce su cantidad de movimiento lineal y por tanto su velocidad.
Esto implica que las partículas, en su movimiento, no tienen asociado una trayectoria defina como lo tiene la física newtoniana.
La explicación divulgativa tradicional del principio de isertidumbre afirma que las variables dinámicas como posición momento angular, etc., se definen de manera operacional.
En este principio supone un cambio básico en la naturaleza física que pasa de un conocimiento absolutamente preciso en teoría. Aun debido de la pequeñez constante de Planck, en el mundo microscópico la determinación cuántica es casi completamente despreciable y los resultado de las teorías físicas determinadas, como la teoría de la relatividad d Einstein, sigue teniendo validez en todos los casos prácticos de interés.
Otros fenómenos deducibles conectados con el principio de indeterminación de heisenberg son:
Efecto túnel
Energía de punto cero
Existencia de partículas virtuales
Energía del principio e inexistencia del vacío absoluto.
El principio de indeterminación se expresa como:
Una de las formas alternativas del principio de indeterminación más conocidas es la indeterminación-tiempo-energía que puede escribirse como:
Esta forma es la más utilizada en mecánica cuántica.
El desarrollo de la física cuántica a introducido nuevas formas de comprender los fenómenos que rodean el comportamiento de las partículas elementales. Se ha visto que las ondas electromagnéticas poseen cualidades de partículas energéticas, así como los electrones poseen propiedades de ondas, es decir, es posible asignarles una frecuencia angular y una contante de movimiento determinada, pero además es imposible establecer un punto exacto del espacio donde se encuentra la partícula. La fusión definitiva que cuantifica estas ideas, a sido conseguida gracias a estudios científicos desarrollados por Erwin Schrodinger, llamádola ecuación de onda, la cual incluye en comportamiento ondulatorio de las partículas y la fusión de la probabilidad de su ubicación.Es cierto que la búsqueda de la solución de esta ecuación es en el extremo complicada, pero para situaciones reales es de gran utilidad para establecer un estudio matemático riguroso de modelos físicos.
El físico austríaco, Erwin Schrödinger, desarrolló en 1925 la conocida ecuación que lleva su nombre. Esta ecuación es de gran importancia en la mecánica cuántica, donde juega un papel central, de la misma manera que la segunda ley de Newton en la mecánica.
Fue entre 1925 y 1930, cuando apareció la teoría de la mecánica cuántica, de la mano de un grupo de investigadores, donde destacaba Erwin Schrödinger. Esta teoría fue importante, no sólo por su relevancia e importante papel en la ciencia, sino también por la gran cantidad de conceptos científicos implicados en ella.
Son muchos los conceptos previos implicados en la ecuación de Schrödinger, empezando por los modelos atómicos. Dalton, Thomson, Rutherford, Bohr, todos ellos contribuyeron al modelo atómico actual, ideado por Erwin Schrödinger, modelo conocido como “Ecuación de onda”. Esta es una ecuación matemática que tiene en consideración varios aspectos:
- La existencia de un núcleo atómico, donde se concentra la gran cantidad del volumen del átomo.
- Los niveles energéticos donde se distribuyen los electrones según su energía.
- La dualidad onda-partícula
- La probabilidad de encontrar al electrón
A inicios del siglo XX se sabía que la luz podía comportarse como una partícula, o como una onda electromagnética, según las circunstancias, siendo el 1923, cuando De Broglie generalizó la dualidad a todas las partículas conocidas hasta el momento, proponiendo la hipótesis de que las partículas pueden ir asociadas a una onda, hecho que se comprobó experimentalmente cuatro años después, al observarse la difracción de electrones. En el caso de los fotones, De Broglie relacionó cada partícula libre con una energía E, con una cantidad de movimiento p, una frecuencia ν, y una longitud de onda λ, relacionandolas de la siguiente manera :
E = h ν
p = h / λ
Clinton Davisson y Lester Germer, realizaron la comprobación experimental, mostrando la longitud de onda relacionada a los electrones según la difracción siguiendo la fórmula de Bragg, que como había predicho De Broglie, se correspondía con la longitud de onda de su fórmula.
Schrödinger trató de escribir una ecuación siguiendo la anterior predicción de De Broglie pero reduciendo las escalas macroscópicas e la ecuación de la mecánica clásica, expresandose la energia mecánica total como:
E= p^2 / 2m + V ( r )
Suscribirse a:
Entradas (Atom)